I'm Not Teaching You To Program!

Extra credit: If you type the following into your calculator, what do you get? " $1 < enter > 2 + 5 < enter > 2 - \times$ "

Todd Zimmerman University of Wisconsin – Stout Menomonie, Wisconsin

AAPT Summer Meeting July 22, 2019

Inspiring Innovation. Learn more at www.uwstout.edu

PICUP

Lowering the barriers for the integration of computation into your curriculum

PARTNERSHIP FOR INTEGRATION OF COMPUTATION INTO UNDERGRADUATE PHYSICS

Outline

Faculty Hurdles Encountered

Student Hurdles Encountered

How to Fail at Integrating Computation

Departmental Norms

Some faculty opposed to computational modeling in introductory courses

"Not your job"

Not My Job

- It's not my job to teach students how to....
 - switch a calculator to radians
 - access material in the LMS
 - solve a quadratic equation
 - integrate a polynomial
 - write a paper
 - modify a computer program

Implementation

I was expecting them to program

Activities not well implemented

Myth of the Lone Professor ■ "I've got a PhD..."

- "I've been teaching physics for a number of years..."
- "I've read the literature..."
- "I know how to program..."

I was just as much of a hurdle

It's All About the Community

- Why should we include computational modeling
 - Reasons to take to colleagues
- How can we make modeling meaningful to students
- How to go about incorporating computation into classes

Link to reports on PICUP website

I'm Not Teaching You to Program

Students see programming as part of CS

- Students don't see how it is relevant
- Students don't see how it helps them to understand physics
- Students see it as extra work

"Why are we learning programming?"

 Students haven't seen this in other physics classes

- Don't call it programming
 - Computational modeling
- Don't say "we are programming" or "we are coding"
 - "We are modifying code"

What is "1<enter>2 + 5<enter>2 -×" equal to?

$(1+2) \times (5-2) = 9$

That's not programming!

This isn't programming...

1	<pre>from vpython import *</pre>
2 3	sphere()
4 5	print <u>(</u> "Hello Sphere")

■ THIS is programming...

	6502	MICROPH	ROCESS	DR	etock
10011000	98 A	PC (0000	SP	MITER
11011100	DC X	STA	TUS		
11011000	D8 Y	NU I	BDIZC		
0000- 40	<u>30 D</u>	4 <u>J</u>	MP \$[043C	
957 957 957 957 957 957 89 957 89 95 89 89 89 89 89 89 89 89 89 89 89 89 89	20900004000000 9766F300F0000 0007030F0000 0007030F0000	009752410035 90840300915 9084004900815	0 20 20 20 20 20 20 20 20 20 20 20 20 20	-935F7300005E	

"This is a physics course"

Show how learning objectives tie to computational modeling

Make it relevant

- Long term projects
- Include exam questions

Talk about computational thinking

Computational Thinking in Introductory Physics

"I should be learning physics"

- Solve problems that aren't possible otherwise
 - Electric field of a rod of charge not on axis or perpendicular to axis

Show things that aren't intuitive

Field between two charged plates

A Short History of Computational Modeling

- Hand-written math: ~ 3000 BCE ...
- Logarithm Tables: 1614 to ?
- Slide Rules: 1620 to 1975
- Handheld Calculator: 1972 ...
- Personal Computer: 1977 …

"Just one more thing to learn"

Start small

- Modify working code or minimally working code
- Provide resources
 - Video tutorials
 - Online courses in Python

- Provide timely feedback
 - Don't be afraid to "give them the answer"

What if I fail?

Too much content to cover

Colleagues don't know Python

Departmental norms

Content Coverage

- 3-credit Statics course
 - No lab or discussion

Talk to "downstream" instructors and departments

Does "coverage" equal "understanding"?

Lack of knowledge

Colleagues don't use Python

Send them to FDW

Co-teach a course

Give them your intro material

Departmental Norms

Serendipity

Keep trying when circumstances change

Mentor new faculty

– Set the new norms

"Change happens one retirement at a time"

Join PICUP

Lowering the barriers for the integration of computation into your curriculum

PARTNERSHIP FOR INTEGRATION OF COMPUTATION INTO UNDERGRADUATE PHYSICS

Join the conversation and ask your questions on Slack:

Thank You

Thanks to the UW-Stout Office of Research and Sponsored Programs and to the Department of Chemistry and Physics for financial support

